The Bloch–Okounkov theorem for congruence subgroups and Taylor coefficients of quasi-Jacobi forms

نویسندگان

چکیده

Abstract There are many families of functions on partitions, such as the shifted symmetric functions, for which corresponding q -brackets quasimodular forms. We extend these so that a congruence subgroup. Moreover, we find subspaces -bracket is modular form. These results follow from properties Taylor coefficients strictly meromorphic quasi-Jacobi forms around rational lattice points.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruence Properties of Taylor Coefficients of Modular Forms

In their work, Serre and Swinnerton-Dyer study the congruence properties of the Fourier coefficients of modular forms. We examine similar congruence properties, but for the coefficients of a modified Taylor expansion about a CM point τ . These coefficients can be shown to be the product of a power of a constant transcendental factor and an algebraic integer. In our work, we give conditions on τ...

متن کامل

Exact Formulas for Coefficients of Jacobi Forms

In previous work, we introduced harmonic Maass-Jacobi forms. The space of such forms includes the classical Jacobi forms and certain Maass-Jacobi-Poincaré series, as well as Zwegers’ real-analytic Jacobi forms, which play an important role in the study of mock theta functions and related objects. Harmonic Maass-Jacobi forms decompose naturally into holomorphic and non-holomorphic parts. In this...

متن کامل

Taylor Coefficients of Mock-jacobi Forms and Moments of Partition Statistics

We develop a new technique for deriving asymptotic series expansions for moments of combinatorial generating functions that uses the transformation theory of Jacobi forms and “mock” Jacobi forms, as well as the Hardy-Ramanujan Circle Method. The approach builds on a suggestion of Zagier, who observed that the moments of a combinatorial statistic can be simultaneously encoded as the Taylor coeff...

متن کامل

Titchmarsh theorem for Jacobi Dini-Lipshitz functions

Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...

متن کامل

Canonical Forms for Unitary Congruence and *Congruence

We use methods of the general theory of congruence and *congruence for complex matrices—regularization and cosquares—to determine a unitary congruence canonical form (respectively, a unitary *congruence canonical form) for complex matrices A such that ĀA (respectively, A) is normal. As special cases of our canonical forms, we obtain—in a coherent and systematic way—known canonical forms for con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Research in the Mathematical Sciences

سال: 2022

ISSN: ['2522-0144', '2197-9847']

DOI: https://doi.org/10.1007/s40687-022-00369-5